

Journal of Organometallic Chemistry 498 (1995) 25-27

Oxidatively induced coupling of fluorenyl ligands in 9-methylfluorenyliron complexes

Lyudmila N. Novikova ^a, Boris A. Mazurchik ^a, Nikolai A. Ustynyuk ^a, Yuri F. Oprunenko ^a, Valerii Ya. Rochev ^b, Valentin G. Bekeshev ^b

^a A.N. Nesmeyanov Institute of Organo-Element Compounds, Russian Academy of Sciences, 117813, Vavilov Str. 28, Moscow, Russia ^b N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117971, Kosygin Str. 4, Moscow, Russia

Received 25 November 1994

Abstract

Oxidation of zwitterionic 9-methylfluorenyliron complexes $[(\eta^6-9-CH_3C_{13}H_8)(\eta^5-C_5R_5)Fe]$ (R = H, (I) or CH₃ (II)) by AgBF₄ or $(C_5H_5)_2FeBF_4$ leads to binuclear dications $\{(\mu-\eta^6:\eta^6-9,9'-(CH_3)_2-9,9'-C_{13}H_8C_{13}H_8)[Fe(C_5R_5)]_2\}(PF_6)_2$ (R = H (III) or CH₃ (IV)) owing to coupling of two methylfluorenyl ligands at the 9 position. It was found that the presence of 9-methyl substituent in fluorenyl ligand plays an important role in determining the result of oxidation of I and II.

Keywords: Iron; Mössbauer spectroscopy

1. Introduction

There is great current interest in the development of new synthetic routes to organometallic compounds based on the reactions of transition metal odd-electron complexes. This methodology necessitates knowledge of regularities relating structures of 17- and 19-electron radicals and ion radicals with their reactivities, since even slight structural modifications can fully change the type of transformation [1,2]. As we have shown previously [3], chemical and electrochemical oxidation of $(\eta^6$ -fluorenyl) $(\eta^5$ -cyclopentadienyl)iron (V) leads to a binuclear complex with a bridging μ - η^6 : η^6 -fluorene ligand. Electro-oxidation of V and II was irreversible up to -70 °C as shown by CVA data and according to

This work was aimed at elucidation of influence of methyl substituent at the 9 position of fluorenyl ligand on the outcome of oxidation of zwitterionic fluorenyl complexes I and II.

2. Results and discussion

Complexes I and II were generated in situ by deprotonation of the corresponding η^{6} -9-methylfluorene cations [(η^{6} -9-CH₃C₁₃H₈)(η^{5} -C₅R₅)Fe]PF₆ (R = H (VI) or CH₃ (VII)). Complexes VI and VII were prepared in their turn according to literature procedures from 9-methylfluorene and ferrocene [4] and from FeBr(CO)₂-(η^{5} -C₅Me₅) [5] respectively.

Oxidation of I and II with $AgBF_4 \cdot 3dioxane$ gave III and IV respectively which were characterized by elemental analysis, Mössbauer spectroscopy, fast atom bombardment (FAB) mass spectroscopy and ¹³C and ¹H NMR spectroscopy. On the basis of these data, III and IV were formulated as products of C(9)–C(9') coupling of two fluorenyl ligands:

Complexes III and IV demonstrate in Mössbauer spectra only one unbroadened doublet, both the isotopic

0022-328X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05424-3

Compound	δ (ppm)										
	$\frac{1}{1}$ Cyclopentadienyl or CH ₃ in pentamethylcyclo pentadienyl ring	9-Н	9-Me	Coordinated six-membered ring	Non-coordinated six-membered ring						
III	4.80 (s, 10H)	-	2.38 (s, 3H), 2.10(s)	5.26(m, 2H), 5.99(t, 2H), 6.21(t, 2H), 6.77(d, 2H)	7.69(t, 2H), 7.76(t, 2H), 7.94(m, 4H)						
IV	1.77 (s, 30H)	-	2.18(s), 2.12(s)	6.70(d, 2H), 6.53(d, 2H), 6.16(m, 6H)	8.0(m, 2H), 7.78(m, 2H), 7.64(m, 6H)						
VI	4.90 (s, 5H), {4.98 ^a (s, 5H)	4.67 (q, 1H, $J = 7.6$ Hz), (4.22 ^a (q, 1H, $J = 7.3$ Hz))	1.63 (d, 3H, $J = 7.6$ Hz), 1.99 ^a (d, 3H, $J = 7.3$ Hz))	6.46–6.56 (m), 6.58 ^a (t), 6.95 ^a (d), 7.09(d), 7.28(m)	7.55–7.67 (m, 2H), 7.77 (m, 1H), 8.15 (m, 1H)						

Table 1 The ¹H NMR spectra of III, IV and VI (solvent acetone- d^6 : tetramethylsilane as the reference standard)

^a The signals of the 9-endo-Me isomer of the VI admixture.

shifts (IS) (III, 0.78 mm s⁻¹; IV, 0.786 mm s⁻¹; relative to sodium nitroprusside) and the quadrupole splitting constants (QSC) (III, 1.69 mm s⁻¹; IV, 1.32 mm s⁻¹) being very close to those of relative arenecy-clopentadienyliron cations (compare with VI (IS, 0.78 mm s⁻¹; QSC, 1.76 mm s⁻¹) and VII (IS, 0.84 mm s⁻¹; QSC, 1.4 mm s⁻¹) [6,7].

This testifies to the d⁶-electron configuration of iron in **III** and **IV**. FAB mass spectroscopy data also confirm the structures proposed. Thus, in the spectrum of **IV**, three intense peaks corresponding to basic fragment ions were observed: {[$(CH_8C_{13}H_8)_2Fe_2(C_5H_5)_2$]PF₆}⁺ (745), [$(CH_3C_{13}H_8)_2Fe_2(C_5H_5)_2$]⁺ (479) and [$(CH_3-C_{13}H_8)Fe(C_5H_5)$]⁺ (300). The ¹H and ¹³C NMR spectroscopy data for **III** and

The ¹H and ¹³C NMR spectroscopy data for III and IV are presented in Tables 1 and 2. Both III and IV demonstrate two methyl singlets in the ¹H NMR spectrum. In our opinion this is stipulated by the existence of III and IV as a mixture of two diastereomeric meso (RS, SR) and racemic (RR, SS) forms.

Thus oxidation of zwitterions I and II proceeds as dimerization of ligand-to-ligand type of corresponding cation radicals (I^{+}) and (II^{+}) . The whole process can be considered as oxidatively induced coupling of two

fluorenyl moieties at the 9 position, this transformation being responsible for irreversibility of electrochemical oxidation of I and II. The results obtained demonstrate a very important role played by the 9-methyl substituent in determining the outcome of oxidation of I and II since the oxidation of the relative zwitterion V which has no substituent at the 9 position proceeds in a quite different route (see Eq. (1)). The reasons for this difference are being clarified at the present time.

3. Experimental details

All reactions were performed in an purified argon atmosphere. The solvents used were purified over sodium-benzophenone ketyl. The ¹H and ¹³C NMR spectra were recorded on Brucker WP-200 SY and Varian VXR-400 instruments. FAB mass spectra were taken with a Kratos Concept instrument (energy of bombarding atoms, 8 keV; 2-nitrobenzyl alcohol as matrix). Brockman II activity degree alumina was used for chromatography. Mössbauer spectra were recorded with a conventional Mössbauer spectrometer. The source was ⁵⁷Co-Cr at room temperature; the samples were at

Table 2

The ¹³	C NMR	spectra	of III ,	IV	and	VI	(solvent,	acetone- d^6 ;	tetramethy	ylsilane	as the	reference	standard)
-------------------	-------	---------	-----------------	----	-----	----	-----------	------------------	------------	----------	--------	-----------	-----------

Compound	δ (ppm)									
	Cyclopentadienyl ring	Me in C ₅ Me ₅ ring	C(9)	Me at C(9)	Coordinated six-membered ring	Non-coordinated six-membered ring				
III	78.12		58.04	20.22	79.82, 83.64, 84.12, 87.70, 101.9, 119.94	122.93, 127.11, 130.58, 131.12, 138.40, 149.02				
IV	91.57	15.56	79.01, 66.04	23.25,	82.42, 84.59, 89.90, 91.62, 100.31, 113.3	123.26, 124.57, 130.82, 131.44, 134.68, 150.92				
VI	79.35, 78.20 ^a	-	45.08, 43.40 ^a	20.35, 17.10 °	79.22 ^b , 81.34, 81.73, 85.36 86.64, 87.01 87.43, 87.59, 104.71 105.5, 113.26, 114.80	123.67 ^b , 123.72, 125.98, 126.37, 129.56, 129.66, 131.81, 131.84, 131.87, 137.62, 150.77, 151.21				

^a The signals of the 9-endo-Me isomer of VI.

^b Resonances of both the 9-exo-Me and the 9-endo-Me isomers of VI are given.

liquid-nitrogen temperature. The IS values were obtained with reference to sodium nitroprusside. The Mössbauer spectra were fitted to lorentzians with a common program.

Complexes II and VII were obtained as reported earlier [8]. Complex VI was prepared from 9-methylfluorene by the method of Nesmeyanov et al. [4].

3.1. Oxidation of I and II with $AgBF_4$

Zwitterions I and II were generated by the action of ¹Bu OK (0.06g, 0.5 mmol) on 0.45 mmol of corresponding η^6 -9-methylfluorene complexes VI and VII in tetrahydrofuran (25 ml). The mixture was stirred at room temperature for 1.5–2 h. 0.22 g (0.47 mmol) of AgBF₄ \cdot 3dioxane was added to dark-green coloured solutions which in about 1 min became yellow-brown. The reaction mixtures were treated with NH_4PF_6 solution (0.08 g, 0.55 mmol) in 15 ml of H_2O . The solutions were filtered off from the metal silver precipitated and were concentrated under reduced pressure at 40-50 °C until oily precipitates formed. The latter were extracted with chloroform and chromatographed on alumina column $(30 \times 100 \text{ mm})$ in the same solvent as eluent. Two yellow bands were sequentially eluted. The minor bands appearing first correspond to η^6 -9-methylfluorene complexes VI and VII whereas the main less mobile bands belong to dimers III and IV. After removal of chloroform in vacuo and reprecipitation from CHCl₃-Et₂O,

mixtures of the following complexes were obtained: 75% III, 5% VI; 60% IV, 8% VII. Anal. of III Found: H, 3.50; C, 50.46. $C_{38}H_{32}F_{12}Fe_2P_2$ (3) Calc.: H, 3.60; C, 51.33%.

Acknowledgement

This work has been carried out with the support of the Russian Foundation of Fundamental Research, grant 93-03-5209.

References

- [1] D. Astruc, Chem. Rev., 88 (7) (1988) 1189.
- [2] M. Baird, Chem. Rev., 88 (7) (1988) 1217.
- [3] L.N. Novikova, N.A. Ustynyuk, L.I. Denisovich, M.G. Peterleitner, S.V. Kukharenko, and V.V. Strelets, *Metalloorg. Khim.*, (4) (1991) 871.
- [4] A.N. Nesmeyanov, N.A. Vol'kenau and I.N. Bolesova, Dokl. Akad. Nauk SSSR, 166 (1966) 607.
- [5] J.-R. Hamon, D. Astruc and P. Michaud, J. Am. Chem. Soc., 103 (1981) 758.
- [6] R.A. Stukan, N.A. Vol'kenau, A.N. Nesmeyanov and V.I. Goldanskii, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (8) (1966) 1472.
- [7] K.I. Turta, R.A. Stukan, V.I. Goldanskii, N.A. Vol'kenau, E.I. Sirotkina, I.N. Bolesova, L.S. Isaeva and A.N. Nesmeyanov, *Teor. i Eksp. Khim.*, 7 (1971) 486.
- [8] L.N. Novikova, B.A. Mazurchik, N.A. Ustynyuk, S.V. Kukharenko and V.V. Strelets, *Izv. Akad. Nauk, Ser.Khim.*, (2) (1994) 319.